NC State Engineering 2+2 Transfer Program

Engineering Course Offerings


In addition to the usual mathematics, science, and humanity/social science engineering degree requirements, the following engineering courses can be taken with the proper prerequisites, via live video conference from NC State. Using state of the art video conference technology, students will participate in an immersive classroom environment where the Program Director facilitates all class meetings.

Not all of these courses are required for every engineering degree program. Students will select them based on their intended major. They are usually taken in the sophomore year. In addition to tuition and fees for UNCW courses taken, tuition and fees for engineering courses will be charged by NC State. The latest NC State tuition and fee information can be found here.

Current semester course offerings can be found here and course registration information can be found here.

Descriptions of Courses Offered Regularly via Distance Education

MAE 206 Engineering Statics (3): Basic concepts of forces in equilibrium. Distributed forces, frictional forces. Inertial properties. Application to machines, structures, and systems. Prerequisite: Cumulative GPA 2.5 or higher and a grade of C or better in both MA 241 (Calculus II) and PY 205 (Calculus-based Physics I)

MAE 208 Engineering Dynamics (3): Kinematics and kinetics of particles in rectangular, cylindrical, and curvilinear coordinate systems; energy and momentum methods for particles; kinetics of systems of particles; kinematics and kinetics of rigid bodies in two and three dimensions; motion relative to rotating coordinate systems. Prerequisite: 2.5 GPA or higher, MA 242 (Calculus III), C- or better in MAE 206 or CE 214

MAE 301 Engineering Thermodynamics (3): Introduction to the concept of energy and the laws governing the transfers and transformations of energy. Emphasis on thermodynamic properties and the First and Second Law analysis of systems and control volumes. Integration of these concepts into the analysis of basic power cycles is introduced. Prerequisite: MA 242 (Calculus III), PY 208 (Calculus-based Physics II) or 202

MAE 314 Solid Mechanics (3): Concepts and theories of internal force, stress, strain, and strength of structural element under static loading conditions. Constitutive behavior for linear elastic structures. Deflection and stress analysis procedures for bars, beams, and shafts. Introduction to matrix analysis of structures. Prerequisite: MA 242 (Calculus III), C- or better in (MAE 206 or CE 214). Corequisite: (MSE 200 or MSE 201, or BME 203, or BAE 315)

MSE 201 Structure and Properties of Engineering Materials (3): Introduction to the fundamental physical principles governing the structure and constitution of metallic and nonmetallic materials and the relationships among these principles and the mechanical, physical and chemical properties of engineering materials. Prerequisite: Grade of C or better in CH 101 (General Chemistry I)

ECE 109 Introduction to Computer Systems (3): Introduction to key concepts in computer systems. Number representations, switching circuits, logic design, microprocessor design, assembly language programming, input/output, interrupts and traps.

ECE 200 Introduction to Signals, Circuits and Systems (4): Ohm's law and Kirchoff's laws; circuits with resistors, photocells, diodes and LEDs; rectifier circuits; first order RC circuits; periodic signals in time and frequency domains, instantaneous, real and apparent power; DC and RMS value; magnitude and power spectra, dB, dBW, operational amplifier circuits, analog signal processing systems including amplification, clipping, filtering, addition, multiplication, AM modulation sampling and reconstruction. Weekly hardware laboratory utilizing multimeter, function generator, oscilloscope and spectrum analyzer and custom hardware for experiments on various circuits and systems. Prerequisite: Cumulative GPA 2.5 or above, C or better in MA 241 (Calculus II) and PY 205 (Calculus-based Physics I).

ECE 209 Computer Systems Programming (3): Computer systems programming using the C language. Translation of C into assembly language. Introduction to fundamental data structures: array, list, tree, hash table. Prerequisite: Grade of C- or better in ECE 109

ECE 211 Electric Circuits (4): Introduction to theory, analysis and design of electric circuits. Voltage, current, power, energy, resistance, capacitance, inductance. Kirchhoff's laws node analysis, mesh analysis, Thevenin's theorem, Norton's theorem, steady state and transient analysis, AC, DC, phasors, operational amplifiers, transfer functions. Prerequisite: C- or better in ECE 200 and Corequisite: ECE 220

ECE 220 Analytical Foundations of Electrical and Computer Engineering (3): This course is designed to acquaint you with the basic mathematical tools used in electrical and computer engineering. The concepts covered in this course will be used in higher level courses and, more importantly, throughout your career as an engineer. Major topics of the course include complex numbers, real and complex functions, signal representation, elementary matrix algebra, solutions to linear systems of equations, linear differential equations, laplace transforms used for solving linear differential equations, fourier series and transforms and their uses in solving ECE problems. Prerequisite: C- or better in ECE 200