From Here to Eternity and Back: Are Traversable Wormholes Possible?

Mary Margaret McEachern
with advising from
Dr. Russell L. Herman
Phys. 495 Spring 2009
April 24, 2009
Dedicated in Memory of My Dear Friend and UNCW Alumnus
Do Physicists Care, and Why?

- Are wormholes possible?
 - How can we model to prove or disprove?
 - Wormholes are being taken seriously

- Possible uses?
 - Interstellar travel
 - Time travel
Outline

- History
- Models that fail
- Desirable traits
- General relativity primer
- Morris-Thorne wormhole
 - Curvature
 - Stress energy tensor
 - Boundary conditions and embeddings
 - Geodesics
 - Examples
- Time machines and future research
What is a Wormhole?

- “Hypothetical shortcut between distant points”
- General relativity
Historical Perspective

- Albert Einstein – general relativity ~ 1916
- Karl Schwarzschild – first exact solution to field equations ~ 1916
 - Unique spherically symmetric vacuum solution
- Ludwig Flamm ~ 1916
 - White hole solution
Historical Perspective

- Einstein and Nathan Rosen ~ 1935
 - “Einstein-Rosen Bridge” – first mathematical proof

- Kurt Gödel ~ 1948
 - Time tunnels possible?

- John Archibald Wheeler ~ 1950’s
 - Coined term, “wormhole”

- Michael Morris and Kip Thorne ~ 1988
 - “Most promising” – wormholes as tools to teach general relativity
Traversable Wormholes?

- Matter travels from one mouth to other through throat
- Never observed
- BUT proven valid solution to field equations of general relativity
Black Holes Not the Answer

- Tidal forces too strong
- Horizons
 - One-way membranes
 - Time slows to stop
- "Schwarzschild wormholes"
 - Fail for same reasons
Simple Models – Geometric Traits

- Everywhere obeys Einstein’s field equations
- Spherically symmetric, static metric
- “Throat” connecting asymptotically flat spacetime regions
- No event horizon
 - Two-way travel
 - Finite crossing time
Simple Models – Physical Traits

- Small tidal forces
- Reasonable crossing time
- Reasonable stress-energy tensor
- Stable
- Assembly possible
A Little General Relativity Primer

\[G_{\alpha\beta} = 8\pi GT_{\alpha\beta} \]

\[G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2} Rg_{\alpha\beta} \]

- Field equations – relate spacetime curvature to matter and energy distribution
- Left side – Curvature
- Right side – Stress energy tensor
- Summation indices
More on General Relativity

“Space acts on matter, telling it how to move. In turn, matter reacts back on space, telling it how to curve.” ~ Misner, Thorne, Wheeler, *Gravitation*
Spacetimes

“A spacetime is a four-dimensional manifold equipped with a Lorentzian metric...[of signature]...(-,+,+,+). A spacetime is often referred to as having (3+1) dimensions.” ~Matt Visser, *Lorentzian Wormholes*.
Representing Spacetimes: Flat

“Line Element”

- Uses differentials
- Einstein summation
- Metric
- Minkowski space:

\[ds^2 = g_{\alpha\beta} dx^\alpha dx^\beta \]

\[ds^2 = g_{tt} dt^2 + g_{xx} dx^2 + g_{yy} dy^2 + g_{zz} dz^2 \]

\[g_{tt} = -1; \quad g_{xx} = 1; \quad g_{yy} = 1; \quad g_{zz} = 1 \quad (\text{cartesian}) \]

\[g_{tt} = -1; \quad g_{rr} = 1; \quad g_{\theta\theta} = r^2; \quad g_{\phi\phi} = r^2 \sin^2 \theta \quad (\text{spherical}) \]
Morris-Thorne Wormhole (1988)

\[ds^2 = -e^{2\Phi} dt^2 + \frac{1}{\left(1 - \frac{b}{r}\right)} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

- \(\Phi(r) \) – redshift function
 - Change in frequency of electromagnetic radiation in gravitational field

- \(b(r) \) – shape function
Properties of the Metric

\[ds^2 = -e^{2\Phi} dt^2 + \frac{1}{\left(1 - \frac{b}{r}\right)^2} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

- Spherically symmetric and static
- Radial coordinate \(r \) such that circumference of circle centered around throat given by \(2\pi r \)
- \(r \) decreases from \(+\infty \) to \(b=b_0 \) (minimum radius) at throat, then increases from \(b_0 \) to \(+\infty \)
- At throat exists coordinate singularity where \(r \) component diverges
- Proper radial distance \(l(r) \) runs from \(-\infty \) to \(+\infty \) and vice versa
Morris-Thorne Metric

\[ds^2 = -e^{2\Phi} dt^2 + \frac{1}{\left(1 - \frac{b}{r}\right)} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

\[
g_{\alpha\beta} = \begin{bmatrix} g_{tt} & 0 & 0 & 0 & 0 \\ 0 & g_{rr} & 0 & 0 & 0 \\ 0 & 0 & g_{\theta\theta} & 0 & 0 \\ 0 & 0 & 0 & g_{\phi\phi} & 0 \end{bmatrix} = \begin{bmatrix} -e^{2\Phi} & 0 & 0 & 0 & 0 \\ 0 & \left(1 - \frac{b}{r}\right)^{-1} & 0 & 0 & 0 \\ 0 & 0 & r^2 & 0 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta & 0 \end{bmatrix} \]
Determining Curvature (Left Side)

- Do we have the desired shape?
- Cartan’s Structure Equations

\[G_{\alpha\beta} = 8\pi GT_{\alpha\beta} \]

“Cartan I”

\[d\Theta^i = -\omega^i_j \wedge \Theta^j \]

“Cartan II”

\[\Omega^i_j = d\omega^i_j + \omega^i_k \wedge \omega^k_j \]

Elie Joseph Cartan (1869~1951)
“One-forms”

\[dx, dy, dz \]

\[pdx + qdy + rdz \]

\[\omega^i_j = -\omega^j_i \]

Take from Morris-Thorne metric:

\[\Theta^0 = -e^\Phi dt \]

\[\Theta^1 = \left(1 - \frac{b}{r}\right)^{-\frac{1}{2}} dr \]

\[\Theta^2 = rd\theta \]

\[\Theta^3 = r\sin\theta d\phi \]
Operations with Forms

- "Wedge product"
 \[dt \wedge dt = dr \wedge dr = d\theta \wedge d\theta = d\phi \wedge d\phi = 0 \]
 \[dt \wedge dr = -dr \wedge dt \]

- "d" Operator: \(k\)-form to \((k+1)\)-form
 1-form
 \[a = a(t,r) \Rightarrow da = \frac{da}{dt} dt + \frac{da}{dr} dr \]

- Combining:
 \[\omega = a(t,r) dt \Rightarrow d\omega = \frac{da}{dt} dt \wedge dt + \frac{da}{dr} dr \wedge dt = \frac{da}{dr} dr \wedge dt \]
Calculation – Connection One-Forms

\[ds^2 = -e^{2\Phi} dt^2 + \frac{1}{\left(1 - \frac{b}{r}\right)^{\frac{1}{2}}} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

\[\Theta^0 = -e^\Phi dt \Rightarrow d\Theta^0 = \Phi' e^\Phi dt \wedge dr; \quad dt = \frac{1}{e^\Phi} \Theta^0 \]

\[\Theta^1 = \left(1 - \frac{b}{r}\right)^{-\frac{1}{2}} dr \Rightarrow d\Theta^1 = 0; \quad dr = \left(1 - \frac{b}{r}\right)^{\frac{1}{2}} \Theta^1 \]

\[\Theta^2 = rd\theta \Rightarrow d\Theta^2 = dr \wedge d\theta; \quad d\theta = \frac{1}{r} \Theta^2 \]

\[\Theta^3 = r \sin \theta d\phi \Rightarrow d\Theta^3 = \sin \theta dr \wedge d\phi + r \cos \theta d\theta \wedge d\phi; \quad d\phi = \frac{1}{r \sin \theta} \Theta^3 \]
Calculation – Connection One-Forms

\[d\Theta^i = -\omega_j^i \wedge \Theta^j \]

\[i, j = t, r, \theta, \phi \]

\[d\Theta^0 = -\omega_1^0 \wedge \Theta^1 - \omega_2^0 \wedge \Theta^2 - \omega_3^0 \wedge \Theta^3 = \Phi' e^\Phi dt \wedge dr \]

\[\Rightarrow -\omega_1^0 \wedge \Theta^1 = \Phi' e^\Phi dt \wedge dr \Rightarrow \omega_1^0 \wedge \Theta^1 = -\Phi' e^\Phi \left(1 - \frac{b}{r}\right)^{\frac{1}{2}} dt \wedge \Theta^1 \]

\[\Rightarrow \omega_1^0 = -\Phi' e^\Phi \left(1 - \frac{b}{r}\right)^{\frac{1}{2}} dt \]

\[\Rightarrow \omega_0^1 = \Phi' e^\Phi \left(1 - \frac{b}{r}\right)^{\frac{1}{2}} dt \]
Matrix of One-Forms

\[\omega_j^i = \begin{bmatrix}
0 & -\Phi' e^\Phi \left(1 - \frac{b}{r}\right)^{\frac{1}{2}} dt & 0 & 0 \\
\Phi' e^\Phi \left(1 - \frac{b}{r}\right)^{\frac{1}{2}} dt & 0 & -\left(1 - \frac{b}{r}\right)^{\frac{1}{2}} d\theta & -\sin \theta \left(1 - \frac{b}{r}\right)^{\frac{1}{2}} d\phi \\
0 & \left(1 - \frac{b}{r}\right)^{\frac{1}{2}} d\theta & 0 & -\cos \theta d\phi \\
0 & \sin \theta \left(1 - \frac{b}{r}\right)^{\frac{1}{2}} d\phi & \cos \theta d\phi & 0
\end{bmatrix} \]
Calculation – Curvature Two-Forms

\[\Omega^i_j = d\omega^i_j + \omega^i_k \wedge \omega^k_j \]

\[= -\frac{1}{2} R^i_{mnj} \Theta^m \wedge \Theta^n \]

- Computed using matrix of one-forms
- Non-zero components of Riemann tensor
- Useful for computing geodesics
Calculation – Curvature Two-Forms

\[
\omega_3^2 = -\cos \theta d\phi \\
d\omega_3^2 = \sin \theta d\theta \wedge d\phi \\
\omega_0^2 = \omega_3^0 = 0 \\
\omega_1^2 = \left(1 - \frac{b}{r}\right)^2 d\theta \\
\omega_3^1 = -\sin \theta \left(1 - \frac{b}{r}\right)^{\frac{1}{2}} d\phi \\
d\theta = \frac{1}{r} \Theta^2 \\
d\phi = \frac{1}{r \sin \theta} \Theta^3
\]

\[
\Omega_3^2 = d\omega_3^2 + \omega_0^2 \wedge \omega_3^0 + \omega_1^2 \wedge \omega_3^1 \\
= \frac{b}{r} \sin \theta d\theta \wedge d\phi \\
= \left(\frac{b}{r} \sin \theta\right) \left(\frac{1}{r}\right) \left(\frac{1}{r \sin \theta}\right) \Theta^2 \wedge \Theta^3 \\
= \frac{b}{r^3} \Theta^2 \wedge \Theta^3
\]

\[
\Rightarrow R_{\phi \theta \phi} = R_{\theta \phi \theta} = \frac{b}{r^3} \\
\Rightarrow R_{\phi \phi \theta} = R_{\theta \phi \theta} = -\frac{b}{r^3}
\]
Riemann Tensor Components

\[
R^t_{trt} = R^r_{trr} = -R^r_{ttr} = -R^r_{trt} = \left(1 - \frac{b}{r}\right) \left[-\Phi'' - (\Phi')^2\right] - \frac{\Phi'(b'r - b)}{2r^2}
\]

\[
R^r_{\theta\theta} = R^\theta_{r\theta r} = -R^r_{\theta\theta r} = -R^\theta_{rr\theta} = \frac{b'r - b}{2r^3}
\]

\[
R^t_{\phi\phi t} = R^\phi_{t\phi t} = -R^t_{\phi t\phi} = -R^\phi_{tt\phi} = \frac{\Phi' \left(1 - \frac{b}{r}\right)}{r}
\]

\[
R^\theta_{\phi\theta\phi} = R^\phi_{\theta\phi\theta} = -R^\theta_{\phi\theta\phi} = -R^\phi_{\theta\theta\phi} = \frac{b}{r^3}
\]
Riemann Tensor Properties

\[R_{tr\theta\phi} = -R_{rt\theta\phi} = -R_{tr\phi\theta} = R_{\theta\phi tr} \]

- Antisymmetric in \((t, r)\)
- Antisymmetric in \((\theta, \Phi)\)
- Symmetric in \((t, r)\) and \((\theta, \Phi)\)
- Only 24 independent components
- Generally in 4D has 256 components
- Governs difference in acceleration of two freely falling particles near each other
\[G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2} R g_{\alpha\beta} \]

Ricci Curvature Tensor

\[
R_{\alpha\beta} = R_{\alpha\beta}^{i} + R_{\alpha\beta}^{r} + R_{\alpha\beta}^{\theta} + R_{\alpha\beta}^{\phi}
\]

\[
= \left(1 - \frac{b}{r} \right) \left[\Phi'' + (\Phi')^2 \right] + \frac{\Phi'(b'r - b)}{2r^2} + \frac{2\Phi' \left(1 - \frac{b}{r} \right)}{r}
\]

\[
R_{rr} = R_{rr}^{i} + R_{rr}^{r} + R_{rr}^{\theta} + R_{rr}^{\phi}
\]

\[
= \left(1 - \frac{b}{r} \right) \left[-\Phi'' - (\Phi')^2 \right] - \frac{\Phi'(b'r - b)}{2r^2} + \frac{b'r - b}{r^3}
\]
Ricci Curvature Tensor

\[G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2} R g_{\alpha\beta} \]

\[R_{\theta\theta} = R^t_{\theta\theta} + R^r_{\theta r\theta} + R^\theta_{\theta r\theta} + R^\phi_{\theta\phi\theta} \]

\[\Phi' \left(1 - \frac{b}{r} \right) = - \frac{b' r - b}{r} + \frac{b}{2r^3} + \frac{b}{r^3} = R_{\phi\phi} \]

\[R_{\phi\phi} = R^t_{\phi\phi} + R^r_{\phi r\phi} + R^\theta_{\phi\theta\phi} + R^\phi_{\phi\phi\phi} \]

\[\Phi' \left(1 - \frac{b}{r} \right) = - \frac{b' r - b}{r} + \frac{b}{2r^3} + \frac{b}{r^3} = R_{\theta\theta} \]
\[G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2} R g_{\alpha\beta} \]

Curvature Scalar

\[R = -R_{tt} + R_{rr} + R_{\theta\theta} + R_{\phi\phi} \]

\[= 2 \left(1 - \frac{b}{r} \right) \left[-\Phi'' - (\Phi')^2 \right] - \frac{\Phi'(b'r - b)}{r^2} - \frac{4\Phi' \left(1 - \frac{b}{r} \right)}{r} + \frac{2(b'r - b)}{r^3} + \frac{2b}{r^3} \]
\[G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2} R g_{\alpha\beta} \]

Einstein Tensor

- **Einstein Tensor**
 \[G_{\alpha\beta} = G_{tt}, G_{rr}, G_{\theta\theta}, G_{\phi\phi} \]

- **“Ricci” Curvature Tensor**
 \[R_{\alpha\beta} = R_{tt}, R_{rr}, R_{\theta\theta}, R_{\phi\phi} \]

- **Curvature Scalar**
 \[R = -R_{tt} + R_{rr} + R_{\theta\theta} + R_{\phi\phi} \]

- **Metric**
 \[g_{\alpha\beta} = g_{tt}, g_{rr}, g_{\theta\theta}, g_{\phi\phi} \]
Einstein Tensor – Components

\[G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2} R g_{\alpha\beta} \]

\[G_{tt} = R_{tt} - \frac{1}{2} R g_{tt} = \frac{b'}{r^2} \]

\[G_{rr} = R_{rr} - \frac{1}{2} R g_{rr} = -\frac{b}{r^3} + \frac{2\Phi'}{r} \left(1 - \frac{b}{r}\right) \]

\[G_{\theta\theta} = R_{\theta\theta} - \frac{1}{2} R g_{\theta\theta} = \left(1 - \frac{b}{r}\right) \left[\Phi'' - \frac{b'r-b}{2r(r-b)} \Phi' + \left(\Phi'\right)^2 + \frac{\Phi'}{r} - \frac{b'r-b}{2r^2(r-b)} \right] = G_{\phi\phi} \]

\[G_{\phi\phi} = R_{\phi\phi} - \frac{1}{2} R g_{\phi\phi} = \left(1 - \frac{b}{r}\right) \left[\Phi'' - \frac{b'r-b}{2r(r-b)} \Phi' + \left(\Phi'\right)^2 + \frac{\Phi'}{r} - \frac{b'r-b}{2r^2(r-b)} \right] = G_{\theta\theta} \]
$G_{\alpha\beta} = 8\pi G T_{\alpha\beta}$

Stress-Energy Tensor

$$T_{\alpha\beta} = \begin{bmatrix}
\rho & 0 & 0 & 0 \\
0 & \tau & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{bmatrix}$$
Equations of State

Rearrange, solve....

- Energy density
 \[\rho = \frac{b'}{8\pi r^2} \]

- Tension
 \[\tau = \frac{1}{8\pi r^2} \left[\frac{b}{r} - 2(r - b)\Phi' \right] \]

- Pressure (stress)
 \[p = \frac{r}{2} \left| (\rho - \tau)\Phi' - \tau' \right| - \tau \]
Wormhole Embedding Diagram

\[z(r) = \pm b_0 \ln \left(\frac{r}{b_0} + \sqrt{\left(\frac{r}{b_0} \right)^2 - 1} \right), \quad b_0 = 2 \]

- Static (t=constant “slice”)
- Assume \(\theta = \pi/2 \) (equatorial “slice”)
- Only \(r, \Phi \) variable

\[
\begin{align*}
 ds^2 &= \left(1 - \frac{b}{r} \right)^{-1} dr^2 + r^2 d\phi^2 \\
 ds^2 &= dz^2 + dr^2 + r^2 d\phi^2
\end{align*}
\]
Boundary Conditions - Shape

- b_0 – minimum radius at throat
- Vertical at throat
- Asymptotically flat

r-axis
Boundary Conditions – No Horizon

Horizon - “physically nonsingular surface at which g_{tt} vanishes”; defined only for spacetimes containing one or more asymptotically flat regions

- e.g. Schwarzschild metric – coordinate singularity at $r=2M$

$$ds^2 = -(1 - \frac{2M}{r}) dt^2 + \left(1 - \frac{2M}{r}\right)^{-1} dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2)$$

- Morris-Thorne metric

$$ds^2 = -e^{2\Phi} dt^2 + \frac{1}{\left(1 - \frac{b}{r}\right)} dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2)$$

$\Phi < \infty \Rightarrow e^{2\Phi} \neq 0$
Other Boundary Conditions

- Crossing time on order of 1 year
- Acceleration and tidal acceleration on order of 1G
Geodesics

- “Geodesics” are “extremal proper time worldlines”; equations of motion that determine geodesics comprise the “geodesic equation” ~ Hartle
- Timelike – Particle freefall paths; $ds^2 < 0$
- Null – Light freefall paths; $ds^2 = 0$
Variational Principle

\[ds^2 = -e^{2 \Phi} dt^2 + \frac{1}{1 - \frac{b}{r}} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

Lagrangian

\[L = \sqrt{-g_{\alpha\beta} \frac{dx^\alpha}{d\sigma} \frac{dx^\beta}{d\sigma}} = \left\{ e^{2\Phi} \left(\frac{dt}{d\sigma} \right)^2 - \left(1 - \frac{b}{r} \right)^{-1} \left(\frac{dr}{d\sigma} \right)^2 - \left(1 - \frac{b}{r} \right) \left(\frac{d\theta}{d\sigma} \right)^2 + \sin^2 \theta \left(\frac{d\phi}{d\sigma} \right)^2 \right\}^{\frac{1}{2}} \]

Euler–Lagrange Equation

\[\tau_{AB} = \int_0^1 L d\sigma \]

\[\Rightarrow -\frac{d}{d\sigma} \frac{\partial L}{\partial \left(\frac{dx^\alpha}{d\sigma} \right)} + \frac{\partial L}{\partial x^a} = 0 \Rightarrow \text{geodesics} \]
Geodesic Equation

\[
\frac{d^2 x^\alpha}{d\tau^2} = -\Gamma^\alpha_{\beta\gamma} \frac{dx^\beta}{d\tau} \frac{dx^\gamma}{d\tau}; \quad \Gamma^\alpha_{\beta\gamma} \equiv \frac{1}{2} g^{\alpha\sigma} \left(g_{\sigma\beta,\gamma} + g_{\sigma\gamma,\beta} - g_{\beta\gamma,\sigma} \right)
\]

\[\alpha, \beta, \gamma, \sigma = t, r, \theta, \phi\]

\[
\alpha = t \Rightarrow \frac{d}{d\tau} \left(e^{2\phi} \frac{dt}{d\tau} \right) = 0
\]

\[
\alpha = r \Rightarrow \frac{d}{d\tau} \left[\left(1 - \frac{b}{r} \right)^{-1} \frac{dr}{d\tau} \right] - \left[\frac{d}{dr} \left(1 - \frac{b}{r} \right)^{-1} \left(\frac{dr}{d\tau} \right)^2 + r \left(\frac{d\theta}{d\tau} \right)^2 + \sin^2 \theta \left(\frac{d\phi}{d\tau} \right)^2 \right] - \Phi' e^{2\phi} \left(\frac{dt}{d\tau} \right)^2 = 0
\]

\[
\alpha = \theta \Rightarrow \frac{d}{d\tau} \left(r^2 \frac{d\theta}{d\tau} \right) - r^2 \sin \theta \cos \theta \left(\frac{d\phi}{d\tau} \right)^2 = 0
\]

\[
\alpha = \phi \Rightarrow \frac{d}{d\tau} \left(r^2 \sin^2 \theta \frac{d\phi}{d\tau} \right) = 0
\]
Christoffel Symbols

- Describe curvature in non-Euclidean space
 - Metric is like first derivative of warp
 - Christoffel symbol is like second derivative of warp
 - Also called “connection coefficients”

- Non-zero Christoffel symbols are components of a 3-tensor

\[
\begin{align*}
\Gamma^t_{rt} &= \Gamma^t_{tr} = \frac{d\Phi}{dr} \\
\Gamma^\phi_{r\phi} &= \Gamma^\phi_{\phi r} = \frac{1}{r} \\
\Gamma^\phi_{\theta\phi} &= \Gamma^\phi_{\phi \theta} = \frac{\cos \theta}{\sin \theta} \\
\Gamma^r_{t t} &= \left(1 - \frac{b}{r}\right) \Phi' e^{2\Phi} \\
\Gamma^r_{rr} &= \frac{b'r - b}{2r(r - b)} \\
\Gamma^\theta_{r \theta} &= \Gamma^\theta_{\theta r} = \frac{1}{r} \\
\Gamma^\phi_{\phi \phi} &= -(r - b) \sin^2 \theta \\
\Gamma^r_{\theta \theta} &= b - r
\end{align*}
\]
Morris-Thorne Examples

- Zero tidal forces
- Exotic matter limited to throat
 - “Absurdly benign” wormhole
Zero Tidal Force Solution

\[\Phi = 0 \]

\[b = b(r) = \sqrt{b_o r} = \sqrt{r} \text{ for } b_o = 1 \]

Equations of State

\[\rho = \frac{b'}{8\pi r^2} = 16\pi r^{\frac{5}{2}} \]

\[\tau = \frac{1}{8\pi r^2} \left[\frac{b}{r} - 2(r - b)\Phi' \right] = 8\pi r^{\frac{5}{2}} \]

\[p = \frac{r}{2} |(\rho - \tau)\Phi' - \tau'| - \tau = 2\pi r^{\frac{5}{2}} \]
Zero Tidal Force Solution

- Wormhole material extends from throat to proper radial distance +/- ∞

- Density, tension and pressure vanish asymptotically

- Material is everywhere exotic
 - *i.e.*, $\tau > \rho > 0$ everywhere
 - Violates energy conditions
 - Need quantum field theory

“Catenoid”
Exotic Matter Limited to Throat

\[b = b_0 \left[1 - \frac{(r - b_0)}{a_0} \right]^2 \]

\[\Phi = 0 \text{ for } b_0 \leq r \leq b_0 + a_0 \]

\[b = \Phi = 0 \text{ for } r \geq b_0 + a_0 \]

- Spacetime flat at \(r > b_0 + a_0 \)
- Tidal forces bearable
- Travel time reasonable
- BUT throat radius must be large to have meaningful wormhole
Backward Time Travel

- Time machine – Any object or system that permits one to travel to the past
- Not proven possible or impossible
- Traveler moves through wormhole at sub-light speed
- Appears to have exceeded light speed to stationary observers
- Causality violations and paradoxes (consistency and bootstrap)

From H.G. Wells, *The Time Machine*
Summary

- Theoretically reasonable
- Morris-Thorne model
 - No horizons
 - Exotic matter
 - Energy condition violations
 - Causality violation
- Much work has been done and continues to be done in this area; models abound!
Possible Questions for Future

☐ Is necessary topological change even permitted? Exotic matter required?

☐ If so, is it allowed on the quantum level?

☐ If so, can we enlarge to classical size?

☐ Morris and Thorne: “...pulling a wormhole out of the quantum foam...”
THANK YOU!

UNCW Class of 2005 (Mathematics)
References (Books and Papers)

- Jaroslaw Pawel Adamiak, *Static and Dynamic Traversable Wormholes* (Univ. of South Africa, January 2005)
References (Websites)

- http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Cartan.html (March 26, 2009)
References (Figures)

- http://www.scifistation.com/masterpiece2.html (March 5, 2009)
References (Figures, cont’d.)
